High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.
نویسندگان
چکیده
PURPOSE To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. METHODS Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. RESULTS The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. CONCLUSIONS The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.
منابع مشابه
High-resolution whole-brain dynamic contrast-enhanced MRI using compressed sensing
Dynamic contrast-enhanced (DCE) MRI is a powerful tool that maps the spatial distribution of vascular parameters in the brain, including blood-brain-barrier (BBB) permeability, interstitial transit times, and interstitial volume. DCE-MRI is widely used to assess BBB leakage in brain tumors and multiple sclerosis lesions, and it has potential applications in Alzheimer’s dementia, vascular cognit...
متن کاملEvaluation of DCE-MRI data sampling, reconstruction and model fitting using digital brain phantom
Purpose: Brain DCE MRI is a powerful technique for evaluating blood-brain-barrier leakage in tumors, multiple sclerosis lesions, and other neurologic disorders. DCEMRI is an active area of research but lacks a gold standard making it difficult to evaluate novel image acquisition, reconstruction, and processing techniques. We introduce the use of patient-derived digital phantoms that provide gro...
متن کاملHighly accelerated dynamic contrast enhanced imaging with prospective undersampling
Introduction: Dynamic contrast enhanced (DCE) imaging employs serial T1-weighted scans to quantify the pharmacokinetics of an injectable contrast agent. This allows assessment of tissue properties such as vascular permeability. Clinical applications of DCE, such as tumor characterization, will benefit from improvements in spatiotemporal resolution and volume coverage beyond what is possible tod...
متن کاملMethods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review
Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...
متن کاملDirect estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.
PURPOSE The purpose of this work was to develop and evaluate a T1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. THEORY AND METHODS The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 43 5 شماره
صفحات -
تاریخ انتشار 2016